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Presentation Outline

The Magneto-hydrodynamic (MHD) generator
The role of control
MHD generator system
Cost-to-go design for optimal control using neural 
networks
Results
Conclusions



Magneto-Hydrodynamic (MHD) 
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MHD Generator System

Assumptions
One-dimensional steady state flow
Inviscid flow
No reactive chemistry
Low Magnetic Reynolds number

x-t equivalence 



Flow Equations

Continuity Equation

Force Equation
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- Fluid density
u - Fluid velocity
A - Channel cross-section area
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P - Fluid pressure
k - Load factor

- Fluid conductivity
B - Magnetic field
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Flow Equations...
Energy Equation

Continuity Equation for the electron number 
density

- Fluid internal energy
- Energy deposited by

the e-beam

ne - Electron number density
jb - Electron beam current

- E-beam energy
Z - Channel width
Y  - Ionization potential
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Performance Characterization

Attaining prescribed values of flow variables at the channel exit 
(Mach number, Temperature)
Maximizing the net energy extracted which is the difference 
between the energy extracted and the energy spent on the e-beam 
ionization
Minimizing adverse pressure gradients
Minimizing the entropy rise in the channel
Minimizing the use of excessive electron beam current
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Features of our optimal controller design technique
Works for both linear and nonlinear systems
Data-based
Finite horizon, end-point optimal control problem
Equivalent to time (position) varying system dynamics

The Predictive Control Based Approach 
for Optimal Control

[1] Kulkarni, N.V. and Phan, M.Q., “Data-Based Cost-To-Go Design for Optimal Control,” AIAA Paper
2002-4668, AIAA Guidance, Navigation and Control Conference, August 2002.
[2] Kulkarni, N.V. and Phan, M.Q., “A Neural Networks Based Design of Optimal Controllers for
Nonlinear Systems,” AIAA Paper 2002-4664, AIAA Guidance, Navigation and Control Conference, August
2002.



Optimal Control Using Neural Networks
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Formulation of the Control Architecture: 
Cost Function Approximator

Collecting system data through simulation or a 
physical model
Parameterizing single step ahead and multi-step ahead 
models called subnets using neural networks
Training the subnets using system data
Formulating a fixed layer neural network that take the 
subnet outputs and calculate the cost-to-go function or 
the cumulative cost function.



Using Subnets to Build the Cost Function 
Network
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Implementation of the Cost function network of order r 
= 10, using trained subnets of order 1 through 5

Cost Function Network
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Formulation of the Control Architecture: 
Neural Network Controller
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Neural Network Controller Training

Gradient of J with respect to the control inputs u(1) ,…, u(50) is 
calculated using back-propagation through the CGA neural 
network.
These gradients can be further back-propagated through the neural 
network controller to get,                     (Wnn - weights of 
the network)
Neural network controller is trained so that
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Training Results for Subnet 10

Testing Subnet 10, ‘∇ ’- Ouput value given by subnet 10, ‘ο’ – Error between the 
subnet 10 output and the actual value given by the simulation



Case 1: Maximizing the Net Power Extracted
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Cost function:

   p1      p2      q1     q2      q3    r1

    0      0  0.0001     0      0 0.005

       Power input-output for the three control profiles

h=30 km, M=8 Power
Spent

Power
Extracted

Net Power
Extracted

Constant
current (50

A/m2)
300 kW 1.918 MW 1.618 MW

Random
current 121 kW 1.381 MW 1.260 MW

Optimal Profile 174 kW 1.717 MW 1.544 MW



Electron beam current profile - constant e-beam current (50 
A/m2 ), O- random profile, ∆ - neural network controller. 



Case 2: Imposing Pressure Profile Penalty

    p1     p2      q1      q3    r1

     0     0  0.0001       0     0
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Choice of the weighting parameters in the cost function:

E-beam current profile and the resulting pressure distribution along the channel, 
- without pressure weighting, ∆ - with pressure weighting.



    p1      p2      q1      q2      q3     r1

     0    100   610−       0       0      0

Free
Stream
Altitude

Free
Stream
Mach
number

Exit Mach
number

Legend in
the plots

30 km 8 4.41 ∆
    31.5 km 7.6 4.58    - - - - 
    28.5 km 8.4 4.52    …… O
    31.5 km 8.4 4.51    -.-.-.-∇
    28.5 km 7.6 4.51 *

Mach number profiles for different free 
stream conditions

Prescribed Exit Mach Number      
Me = 4.5

Case 3: Prescribing an Exit Mach Number
Choice of the weighting parameters in the cost function:



Conclusions

Formulation of the problem of performance optimization of the 
MHD Generator as an optimal control problem
Implementation of the cost-to-go design approach for optimal 
control using neural networks
Data-based approach
Successful implementation for different performance criteria
Future work to incorporate sensors along the channel to further 
optimize the system performance
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